Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F1(+2(x, 0)) -> F1(x)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)

The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F1(+2(x, 0)) -> F1(x)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)

The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)

The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F1(+2(x, 0)) -> F1(x)

The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


F1(+2(x, 0)) -> F1(x)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
F1(x1)  =  F1(x1)
+2(x1, x2)  =  +1(x1)
0  =  0

Lexicographic Path Order [19].
Precedence:
[F1, +1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(+2(x, 0)) -> f1(x)
+2(x, +2(y, z)) -> +2(+2(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.